

Patent Abstracts

These Patent Abstracts of recently issued patents are intended to provide the minimum information necessary for readers to determine if they are interested in examining the patent in more detail. Complete copies of patents are available for a small fee by writing: U.S. Patent and Trademark Office, Box 9, Washington, D.C. 20231.

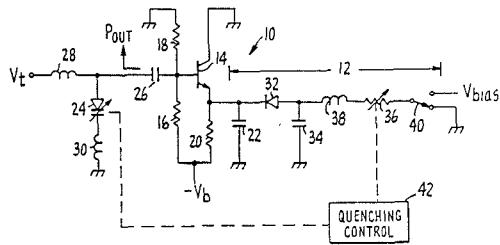
4,755,772

July 5, 1988

layout is one-sided fixed to a contiguous ground plane without using slots or holes in it and othersided open from a top side. The application is dedicated to an approximate frequency range of at least 1 to 18 GHz.

Switchable Microwave Oscillator

9 Claims, 6 Drawing Sheets

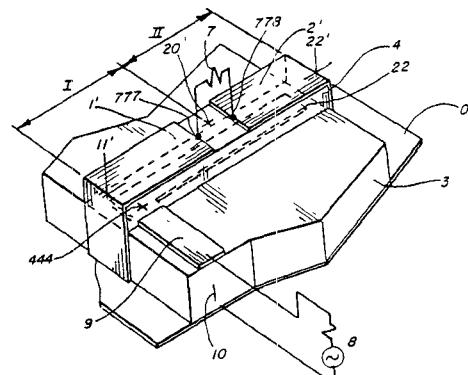

Inventor: Amarpal S. Khanna.

Assignee. Avantek, Inc.

Filed: June 5, 1987

Abstract —A switchable microwave oscillator is disclosed that includes a quenching circuit for switching, attenuating, modulating, or otherwise controlling the output amplitude of frequency-stabilized, transistor-based, microwave-frequency oscillators. The quenching circuit includes a diode that is coupled to the transistor at the same port that reactive feedback is present, and includes diode biasing means for selectively applying a bias voltage to the diode. The quenching circuit selectively diverts some of the current flowing through the transistor of the oscillator to control the output thereof.

14 Claims, 2 Drawing Sheets


4,755,775

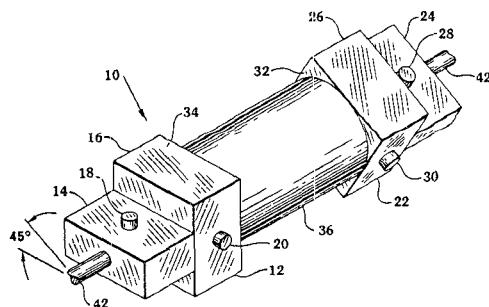
July 5, 1988

Microwave Balun for Mixers and Modulators

Inventors: Wojciech Marczewski and Waclaw Niemyjski.
Assignee: Polska Akademia Nauk Centrum Badan Kosmicznych.
Filed: Dec 4, 1984

Abstract —A microwave balun using microstrip broadside coupled lines is disclosed for achieving a broadband double balanced mixer or modulator performance. The use of a double layered structure for broadside coupled microstrip lines, called overlapped microstrip lines, makes a balun design equivalent to well known double coaxial Marchand design. It is feasible by means of thin film and MMIC's technology. The most advantageous applications of the balun include its simple and inverted options useful for mixer or modulator design considering both the balun and semiconductor junctions manufactured in one compact volume of the lower substrate. A balun circuit

4,755,777


July 5, 1988

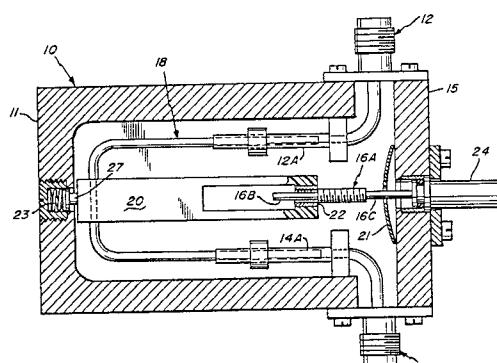
Variable Power Divider

Inventors: Nathaniel L. Cohen and Ahmet D. Ergene.
Assignee: General Dynamics Corp /Convair Division.
Filed: Mar. 3, 1986.

Abstract — A variable microwave power divider which includes an orthomode transducer having a first section capable of supporting a vertically polarized wave and a second section capable of supporting two orthogonal linearly polarized waves. Suitable probes for inserting or extracting RF energy are coupled to each section. A similar orthomode transducer is connected to the first transducer through a circular hollow waveguide with the transducers being angularly offset from one another a predetermined angular amount. A septum is positioned within the waveguide which is fixed thereto at one end with the other end being controlled to a predetermined spiral configuration in order to direct RF energy flowing through the waveguide to the sections of one transducer in a determinable manner.

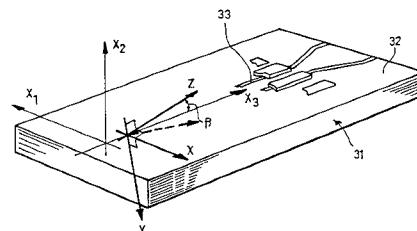
11 Claims, 1 Drawing Sheet

4,755,778


July 5, 1988 4,756,588

July 12, 1988

Microwave Apparatus


Inventor: Harry F. Chapell.
 Assignee: Sage Laboratories, Inc.
 Filed: June 12, 1987.

Abstract—An electromagnetic signaling apparatus, particularly in which components thereof have relative adjustment therebetween. A combination lead screw and associated support nut moves one of the components, such as may appear in a phase shifter. The lead screw has thread reliefs to provide disengagement at predetermined limits of rotation so as to prevent jamming and thread stripping. Spring means are employed for reengagement

8 Claims, 8 Drawing Sheets**Polarization-Independent Optoelectronic Directional Coupler**

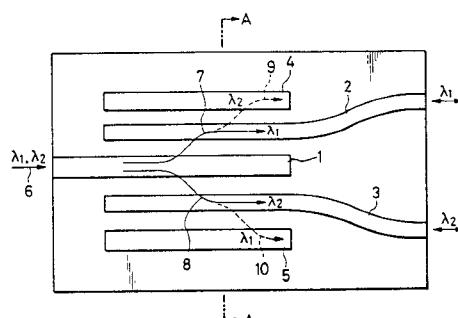
Inventor: Per O. Granstrand.
 Assignee: Telefonaktiebolaget L M Ericsson.
 Filed: June 10, 1986.

Abstract—This invention relates to a polarization-independent optoelectric directional coupler. A wafer (11) e.g. of lithium niobate has light waveguides (13) at its upper surface (12). There are main electrodes (17) and secondary electrodes (18) along the interaction length (L_1) of the light waveguides. The wafer is oriented in relation to its crystalline structure (X, Y, Z) such that its optical axis (Z) is in a plane at right angles to the upper surface (12) and contains the longitudinal direction of the waveguides (13). The optical axis (Z) deviates here an angle (β) of at most 15 degrees from the upper surface (12), and the X axis may have six symmetrically distributed positions, of which one is in the plane of the upper surface (12). Independent of the polarization state of a light beam, this beam entering at an input (14) can be switched in its entirety to either of the outputs (15) of the coupler. With the aid of the secondary electrodes (18) an electrical field through the waveguides can be directed at right angles to the upper surface (12). With the stated orientation of the wafer, the refractive index of the material can be changed hereby so that the desired switching is obtained. The light propagation in the direction of the optical axis (Z) permits high pulse frequency.

6 Claims, 5 Drawing Sheets

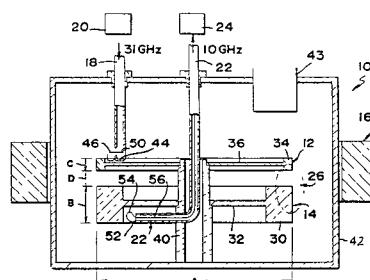
4,756,587

July 12, 1988


4,757,278

July 12, 1988

Optical Multi/Demultiplexer

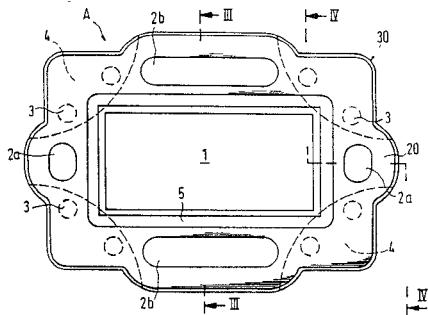

Inventors: Hirohisa Sano, Katsuyuki Imoto, and Minoru Maeda.
 Assignee: Hitachi, Ltd.
 Filed: Aug 12, 1987

Abstract—An optical multi/demultiplexer comprising a first waveguide for inputting/outputting light, second and third waveguides which are respectively arranged on both sides of the first waveguide, and first and second open-waveguides which are respectively arranged on sides of the second and third waveguides remote from the first waveguide.

6 Claims, 9 Drawing Sheets**Low-Noise Cryogenic Dielectric Resonator Oscillator**

Inventor: G. John Dick.
 Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration.
 Filed: Nov 5, 1987

Abstract—A microwave oscillator is provided which can operate at a temperature of many degrees above absolute zero while providing very low phase noise that has heretofore generally required temperatures within a few degrees K. The oscillator includes a ring-shaped resonator element of ruby (sapphire plus chromium) or iron sapphire crystal, lying adjacent to a resonator element of sapphire, so the regenerator element lies directly in the magnetic field of the resonator element. The resonator element is substantially devoid of contact with electrically conductive material. Microwave energy of a pump frequency (e.g. 31 GHz) is applied to the regenerator element, while signal energy (e.g. 10 GHz) is outputted from the resonator element.


11 Claims, 1 Drawing Sheet

are in alignment with pockets to allow fasteners to be inserted therein so as to connect adjoining waveguides. Integrated in the wall of each waveguide are cooling channels which are arranged in such a manner that they do not intersect with the boreholes. The cooling channels and the interior of the waveguides are sealed at the respective joints by a profiled sealing element.

9 Claims, 3 Drawing Sheets

4,757,292

July 12, 1988

Microwave Window


Inventors: Richard V. Basil, Jr., Meredith K. Eick, Juri G. Leetmaa, and Donald G. Swartz

Assignee: Hughes Aircraft Company.

Filed: Aug. 8, 1986

Abstract — A low noise coaxial microwave window of particular utility in hermetic and high power applications, having a metallic center conductor, a metallic outer support, and a ceramic support brazed between the two conductors. The brazed joints are specially prepared to have a series of layers and sublayers extending from the ceramic to the metal, as follows: ceramic, cermet, cermet-nickel alloy, copper-nickel alloy, copper, braze metal, and metallic piece. The nickel content of the cermet-nickel and copper-nickel alloys is limited so that the alloys are non-magnetic. The nickel-containing alloys assist in bonding the copper layer to the cermet in a reliable, reproducible fashion, but control of the nickel content avoids microwave intermodulation effects. Where the window separates a vacuum from another medium, the surface of the support contacting the vacuum is formed from at least two noncoplanar segments to eliminate the possibility of multipacting. The same techniques are used in waveguide microwave windows.

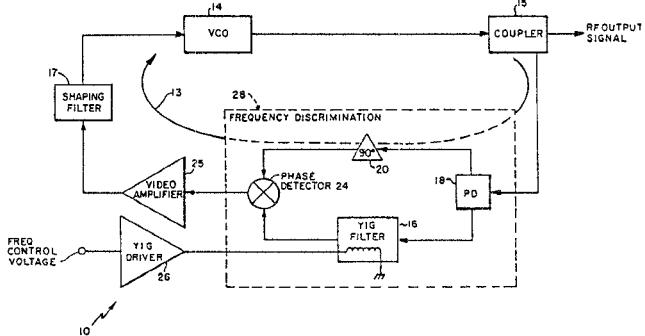
12 Claims, 1 Drawing Sheet

4,758,800

July 19, 1988

Low-Noise Magnetically Tuned Resonant Circuit

Inventors: Robert DiBiase, Zvi Galani, Raymond C. Waterman, Jr., Ernst F. R. A. Schloemann, and Ronald E. Blight.


Assignee: Raytheon Company

Filed: Apr. 2, 1987

Abstract — A magnetically tuned resonant circuit having improved noise performance includes a ferrimagnetic or gyromagnetic body such as a YIG sphere which is disposed within RF structure. The RF structure is disposed

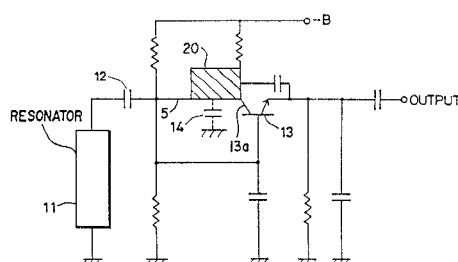
between a pair of pole pieces of a biasing magnet and flux return path. Several techniques are described for reducing fluctuations in magnetic fields through the gyromagnetic body. The gyromagnetic body is isolated from conductive surfaces, or the bulk of conductive surfaces in the region adjacent to the magnetic body are reduced. Further, a technique is also described which provides a break in the electrical continuity around the RF structure. Each of these techniques reduce the magnitude of thermally induced eddy current flow in conductive regions adjacent to the resonant body. It is believed that such eddy current flow produce random magnetic field variations which produce random variations in the frequency characteristics of conventional magnetically tuned resonant circuits.

54 Claims, 8 Drawing Sheets

4,758,804

July 19, 1988

Frequency Stabilized High-Frequency Oscillator


Inventors: Atsushi Inoue, Tsukasa Senba, and Toshiaki Fujimura.

Assignee: Murata Manufacturing Co., Ltd.

Filed: Jan. 21, 1987.

Abstract — A high-frequency oscillator having a high-frequency oscillation circuit formed through use of a microstrip line. The high-frequency oscillation circuit has a resonator and a transistor connected to a reference potential and coupled with the resonator through a first capacitor. A first electrode of the transistor is connected with the resonator through the first capacitor. A second electrode of the transistor is connected to the reference potential and a third electrode thereof is adapted to derive an output. A substrate is provided with a land portion to be connected with the first electrode of the transistor, and a capacitor electrode is formed on the opposite surface of the substrate to be opposite to the first electrode connection land portion through the substrate. The capacitor electrode, the first electrode connection land portion and the substrate form a second capacitor, which is connected to the reference potential between the first capacitor and the first electrode of the transistor.

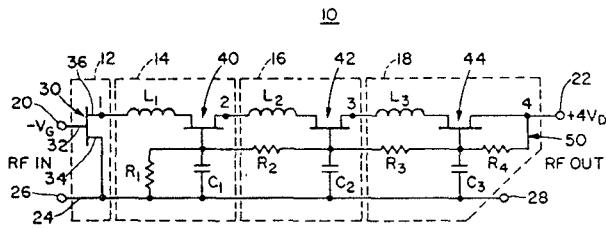
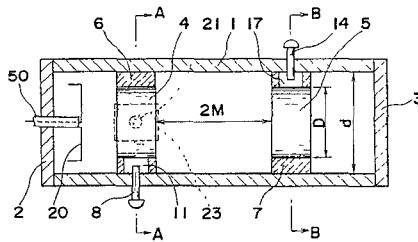
2 Claims, 4 Drawing Sheets

4,760,350

July 26, 1988

9 Claims, 5 Drawing Sheets

Internally Matched Power Amplifier



Inventor: Yalcin Ayasli.

Assignee: Hittite Microwave Corporation.

Filed: June 8, 1987.

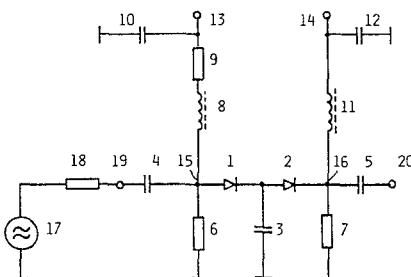
Abstract — An internally matched power amplifier including an input terminal for receiving an input signal and an output terminal; a plurality of semiconductor devices connected with the load electrodes in series; transmission means for coupling the load electrodes of neighboring devices in the series and establishing an internal impedance match; the last device in the series having its other electrode connected to the output terminal; the first device in the series having its control electrode connected to the input terminal and its other load electrode connected to a common conductor and having a predetermined d.c. bias level and a predetermined signal voltage level between its control and its other electrode; first means for setting the control means of each device but the first in the series to the predetermined signal voltage level and second means for biasing the control electrode of each device but the first in the series to the predetermined dc bias level.

14 Claims, 2 Drawing Sheets

4,760,361

July 26, 1988

2 Claims, 1 Drawing Sheet


Double-Mode Filter

Inventor: Yoshio Kobayashi.

Assignee: Murata Manufacturing Co., Ltd.

Filed: Mar. 3, 1987

Abstract — A double-mode filter having double-mode resonance in each resonator, with at least two dielectric resonators being accommodated within a cut-off waveguide having a given axial length. This double-mode filter is easier to design, easier to manufacture through simplified construction, and also has smaller insertion loss. No metallic bulkhead having a coupling slot is required between each pair of stages, so that lower loss is achieved or the coupling coefficient may be analytically calculated, thus realizing high-precision design.

